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Abstract 
 
A numerical procedure for aerodynamic load analysis of long span bridges is presented. The preconditioned Rey-

nolds averaged Navier-Stokes equations are adopted to compute flows over the bridges. To capture the turbulent char-
acteristics of the flows, two equation turbulence models, Coakley’s ω−q  model and Menter’s ω−k  SST model, 
are used to compute the turbulent viscosity. A dual time stepping method in conjunction with the AF-ADI method is 
used to advance the solution in time. A loosely coupled method of the preconditioned RANS equations with the turbu-
lence model equations is employed for fast computation without losing numerical stability. The numerical method for 
the aerodynamic load analysis is verified against well-known benchmark problems. Aerodynamic loads of two real 
bridges are computed with the method to demonstrate the usefulness of the method. 
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1. Introduction 

The prediction of aerodynamic load on bridges be-
comes crucial as the structural design of the bridges 
becomes precise. Experimental approaches using 
wind tunnels have been the choice of engineers due to 
difficulties in predicting the aerodynamic load. With 
recent advances in computational fluid dynamics 
(CFD), the engineers are now equipped with a new 
powerful tool to predict the aerodynamic load on the 
bridges in addition to the wind tunnel testing. With 
CFD tools, the turnaround time for the design cycle is 
getting shorter and the cost of the design is getting 
lower. 

Aerodynamic analysis of long-span bridges is usu-
ally done with two-dimensional analysis because 
three-dimensional effects are limited to both ends of 
the bridges. Shirai and Ueda [1] employed a two-

dimensional Reynolds averaged Navier-Stokes 
(RANS) method for self-oscillating bridge deck sec-
tions. A modified non-linear eddy viscosity model 
based on the ε−k  model was used for turbulent 
flow computations. Two bridge sections were investi-
gated for the aeroelastic behavior. Larsen and Walther 
[2] studied the wind loading and the aeroelastic re-
sponses of five generic bridge deck sections in cross 
wind using a discrete vortex method for two-
dimensional incompressible viscous flows. 

In this paper, a preconditioned RANS method with 
two-equation turbulence models is used to compute 
unsteady turbulent flows over long span bridges. 
Coakley’s ω−q  model [3] and Menter’s SST (shear 
stress transport) ω−k  model [4] are used for turbu-
lent flow simulations. It is well known that the con-
vergence characteristics of the Navier-Stokes equa-
tions suffer from slowdown when the Mach number 
is low. This comes from the fact that the disparity in 
eigenvalues of the convective fluxes becomes large, 
as the Mach number is getting low. Preconditioning 
methods modify locally the eigenvalues so that the 
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convergence characteristics at low Mach number are 
enhanced compared to the unmodified Navier-Stokes 
equations. The preconditioning method proposed by 
Weiss and Smith [5] is adopted in this paper. A finite 
volume method is used to discretize the spatial de-
rivatives of the preconditioned RANS equations and 
the two-equation turbulence model equations. Roe’s 
approximate Riemann solver [6] in conjunction with 
MUSCL extrapolation [7] is used for the second order 
spatial discretization error. The preconditioning me-
thod, however, destroys the true unsteadiness due to 
the modified time term. Moreover, the linearization of 
non-linear fluxes introduces temporal errors when the 
AF-ADI (approximate factorization-alternate direc-
tion implicit) method [8] is applied. For time accurate 
computations, the dual time stepping method [9] is 
used to obtain time accurate solution. In the dual time 
stepping method, a fictitious time term added to the 
Navier-Stokes equations is used to march the solu-
tions, so that the factorization error as well as the 
linearization error can be minimized. Also, it reduces 
the time lag error associated with the explicit bound-
ary condition method that is used in this paper. 

In this paper, we will first present the governing 
equations; the preconditioned RANS equations and 
the turbulence model equations. We will discuss the 
numerical methods used in this paper. Starting with 
the preconditioning method, the spatial discretization 
method and the temporal discretization method will 
be discussed. The explicit boundary condition method 
suitable for the preconditioned RANS equations will 
be presented later. A couple of computational exam-
ples will be used to verify our numerical method. 
Finally, computational examples for real bridges will 
be presented to show the versatility of our method. 
 

2. Governing equations 

2.1 Reynolds averaged navier-stokes equations 

The compressible RANS equations with a two-
equation turbulence model can be written in Cartesian 
coordinates as 
 

∂ + ∇ ⋅ = ∇ ⋅ +
∂

r r
c d

W F F S
t

. (1) 

 
Here, W  denotes the conservative flow variable 
vector 
 

[ ],  , ,  ρ ρ ρ= T
i kW u E s , (2) 

where ρ , iu  and E  are the density, the velocity 
components of the velocity vector, and the specific 
total energy, respectively. The superscript, T  de-
notes the transpose of a vector. The turbulent vari-
ables can be either the turbulent velocity scale, 

1 =s q  and the specific dissipation rate, 2 ω=s  for 
Coakley’s ω−q  model or the turbulent kinetic en-
ergy, 1 =s k  and the specific dissipation rate, 

2 ω=s  for Menter’s ω−k  SST model. Also, 
r

cF  
is the convective flux vector and 

r
dF  is the viscous 

flux vector. Their components are defined by 
 

, , ( ),  ρ ρ δ ρ ρ⎡ ⎤= + +⎣ ⎦
T

c i i j ij i i kF u u u p u E p u s , (3) 

( )0, , ,τ µ σ µ
⎡ ⎤∂= Ω +⎢ ⎥∂⎣ ⎦

k

T

k
d ij j s t

i

sF
x

, (4) 

 
where p  is the static pressure and δ ij  is the Kro-
necker delta. 

1
σ s  and 

2
σ s  are the turbulent model 

constants whose values can be found in Ref [3] for 
Coakley’s ω−q  model and Ref [4] for Menter’s 

ω−k  SST model. The total stress tensor, τ ij  and 
the total energy flux vector, Ωi  are defined by 
 

( ) ( )3
2

τ µ µ µ µ δ
⎛ ⎞∂∂ ∂= + + − +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

ji k
ij t t ij

j i k

uu u
x x x

, (5) 

Pr Pr
µ µτ

⎛ ⎞ ∂Ω = + +⎜ ⎟ ∂⎝ ⎠
m t

i j ji p
t i

Tu C
x

, (6) 

 
where µ  and µt  are the molecular viscosity and 
the turbulent viscosity, respectively. k  and tk  are 
the thermal molecular conductivity and the turbulent 
conductivity. They can be expressed by using the 
Prandtl numbers as Pr /µ= pC k  and Pr /µ=t p t tC k . 
For air, Pr 0.72=  and Pr 0.9=t  are used through-
out this paper. The temperature, T  and the pressure 
are related to the specific total energy by the equation 
of state for a perfect gas, 
 

1
2

= + i iE e u u , ( )1γ ρ= −p e , = ve C T , (7) 

 
where e  is the specific internal energy; pC  and 

vC  are the specific heats at constant pressure and 
volume, respectively. Here, /γ = p vC C  is the ratio 
of specific heats. For air, 1.4γ =  is used. The source 
term, which arises from the turbulence equations, can 
be defined by 
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1 2[0,  0,  , ]= TS S S , (8) 
 
where the exact form of 1S  and 2S  can be found in 
Ref. [3] and Ref. [4]. 
 
2.2 Two-equation turbulence models 

Coakley’s ω−q  turbulence model uses the trans-
port equations for the turbulent velocity scale, q , 
and the specific dissipation rate, ω , to estimate the 
eddy viscosity. The turbulent velocity scale and the 
specific dissipation rate are related to the more popu-
lar turbulent variables, the turbulent kinetic energy k  
and the turbulent dissipation rate, ε , 
 

1 = =s q k , 2

εω= =s
k

, (9) 

 
The turbulent viscosity can be computed by using the 
Prandtl-Kolmogorov relation 
 

2

µ
ρµ
ω

=t q

qC D , (10) 

 
where 0.09µ =C . When the ω−q  model equation 
is integrated to the wall, the damping function is 
given by 
 

1 exp( 0.022 )= − −q qD R , ρ
µ

=q

qyR , (11) 

 
where y  is the normal distance from the nearest 
wall. If the wall function boundary condition is used 
along the solid wall, the damping term is set to 1. One 
of the advantages in using the ω−q  model over 
other two-equation models is its numerical robustness. 
Unlike the ε−k  model, the source terms are 
bounded near the solid wall. Also, it is known that the 

ω−q  model is insensitive to the free-stream turbu-
lent quantities. 

The SST ω−k  model of Menter is a hybrid 
model that combines Wilcox’s ω−k  model in the 
inner boundary layer and the ε−k  model in the 
outer region of the boundary layer using a blending 
function, 
 

4

2
1 2 2

500 4tanh min max ; ;
0.09

ω

ω

ν ρσ
ω ω

⎡ ⎤⎛ ⎞⎛ ⎞
= ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦k

k kF
y y CD y

, (12) 

 
where the cross-diffusion terms is given by 

20
2

1max 2 ,10ω ω
ωρσ

ω
−

⎡ ⎤∂ ∂= ⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

k
j j

kCD
x x

. (13) 

 
A limitation of the shear stress is introduced in ad-
verse pressure gradient regions as realized in Eq. (14), 
 

2

0.31
max[0.31 ; ]

µν
ρ ω

= =
Ω

t
t

k
F

, (14) 

 
where Ω  is the magnitude of the vorticity vector 
and 2F  is defined by 
 

2

2 2

500tanh max 2 ;
0.09

ν
ω ω

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

kF
y y

. (15) 

 

3. Governing equations 

3.1 Preconditioning method 

The time marching schemes based on the density-
based method suffer convergence degradation due to 
the wide disparity in the particle velocity and the 
acoustic wave speeds at low Mach numbers. The 
preconditioning methods alter the acoustic wave 
speeds comparable to the magnitude of the particle 
velocity by changing the time derivative terms of the 
Navier-Stokes equations. Therefore, good conver-
gence characteristics can be attained even at low 
Mach numbers. In this paper, the preconditioning 
method of Weiss and Smith is adopted to ensure good 
convergence characteristics at all speeds. The precon-
ditioning method modifies the Navier-Stokes equa-
tions and the two-equation turbulence model equa-
tions as 
 

∂Γ +∇ ⋅ = ∇ ⋅ +
∂

r r
c d

Q F F S
t

, (16) 

 
where Q  is the primitive variable vector, 
 

1 2,  , , ,  , ⎡ ⎤= ⎣ ⎦
T

gQ p u v T s s . (17) 
 
Here, the gauge pressure = −g atmp p p  is used in-
stead of the static pressure. According to the study of 
Venkateswaran and Merkle [10], using the gauge 
pressure reduces the round-off error associated with 
low Mach number flows. The preconditioning matrix 
of Weiss and Smith for two-dimensional problems is 
given by 
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1
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2
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⎣ ⎦

i i

T
uu

T
vv

T
u uH u v
T
ss

T
ss

T

, (18) 

 
where the total enthalpy is defined by 
 

ρ
+= E pH , (19) 

 
and the parameter, Θ  which is related with the ref-
erence velocity, rU  is given by 
 

2

1 1Θ = +
r pU C T

. (20) 

 
The reference velocity, rU  acts as a cut-off veloc-

ity above which the preconditioning method is turned 
off. The detailed definition of the reference velocity 
can be found in Ref. [10]. 

 
3.2 Spatial discretization 

Upon applying the finite volume discretization, the 
semi-discretized governing equations are found to be 
 

∂Γ =
∂
Q R
t

, (21) 

 
where the residual is defined by 
 

( ) ( ){
( ) ( ) }

1/ 2 1/ 2

1/ 2 1/ 2

1
+ −

+ −

= ∆ − ∆

+ ∆ − ∆ +

i i

j j

R F S F S
V

F S F S S
. (22) 

 
In Eq. (22), the total flux vector is used to avoid mes-
sy mathematical expressions 
 

ˆ ˆ= − = ⋅ − ⋅
r r

c d c dF F F F n F n , (23) 
 
where the generalized inviscid flux vector and the 
viscous flux vector are 

1

2
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ρ
ρ
ρ

ρ
ρ

⎡ ⎤
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c

n

n

n

v
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F
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v s

,

( )
( )

1 1

2 2

0

ˆ
ˆ

τ τ
τ τ

µ σ µ
µ σ µ

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+

= ⎢ ⎥
Ω + Ω⎢ ⎥

⎢ ⎥+ ⋅∇
⎢ ⎥

+ ⋅∇⎢ ⎥⎣ ⎦

x xx y yx

x xy y yy
d

x x y y

m s t

m s t

n n
n n

F
n n

n s
n s

. (24) 

 
The normal velocity to the cell edge used in Eq. (24) 
is defined by 
 

ˆ= ⋅ = +r
n x yv n u n u n v , (25) 

 
where n̂  is the outward normal vector of the com-
putational cell. 

The Jacobian matrix of the preconditioned flux 
vector becomes 1−

Γ = Γ ∂ ∂cA F Q , and its eigenvalues 
are found to be 
 

( ) ( ), , , , ,λ Γ ′ ′ ′ ′= + −n n n n n nA v v v a v a v v , (26) 
 
where 
 

( 1)
2

β′ = +n
n

vv , 
2

2( 1)
2

β⎧ ⎫′ = − +⎨ ⎬
⎩ ⎭

n
r

va U , 

2

2β = rU
a

, γ
ρ

= pa . (27) 

 
On the other hand, the eigenvalues of the original 
governing equations are 
 

( ), , , , ,λ ⎛ ⎞∂ = + −⎜ ⎟∂⎝ ⎠
c

n n n n n n

F v v v a v a v v
Q

. (28) 

 
Note that the condition number of the preconditioned 
system becomes smaller compared to that of the orig-
inal system. The condition number is defined by the 
ratio of the largest eigenvalue to the smallest eigen-
value in magnitude. 

For numerically stable computations, the general-
ized inviscid flux vector is replaced with Roe’s ap-
proximated Riemann solver as 
 

( )1/ 2 1

1
2+ + Γ= + − Γ ∆%

i i ic c cF F F A Q . (29) 

 
The matrix product, ΓΓ A  is evaluated with Roe’s 
average. MUSCL (monotone upwind schemes for 
conservation laws) extrapolation together with the 
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minmod limiter or van Alabada’s limiter is used for 
the second order of accuracy in order to maintain the 
TVD (total variation diminishing) property. 

The spatial derivatives that are needed to evaluate 
viscous terms can be computed from the gradient 
theorem, 
 

$1∇ = ∫Sf f ndS
V

. (30) 

 
3.3 Temporal discretization 

The semi-discretized equations, Eq. (21), show that 
the steady state solution does not depend upon the 
preconditioning matrix. However, Eq. (21) should be 
modified in order to solve unsteady problems. The 
dual time stepping method is applied to the precondi-
tioned Navier-Stokes equations and the turbulence 
model equations, 
 

τ
∂ ∂Γ + =
∂ ∂
Q W R

t
. (31) 

 
The preconditioning matrix is now pre-multiplied to 
the artificial time term instead of the time term as in 
Eq. (21). The discretized version of Eq. (31) is now 
given as 
 

1

1

(1 )
2 2

(1 ) 0

φ φ
τ

θ θ

−

+

∆ ∆ ∆+ − + Γ
∆ ∆ ∆

+ + − =

n l

l n

W W Q
t t

R R
, (32) 

 
where the corrections are defined by 
 

1+∆ = −l lW W W , 
1+∆ = −n n nW W W , 

1 1− −∆ = −n n nW W W . (33) 
 
The superscript n  denotes the time step and the 
superscript l  denotes the fictitious dual time step. 
The combinations of φ  and θ  give the different 
temporal accuracy of the scheme. In this paper, 1φ =  
and 1θ =  are used, which gives second order accu-
racy in time. 

Upon applying the alternating direction implicit 
(ADI) method, the resulting dual time stepping me-
thod can be written as 
 

1 τ− ∆ = −∆i jL D L Q R , (34) 
 
where the operators are given by 

1/ 2 1/ 2
1/ 2

1

1/ 2 1/ 2
1/ 2

1

θ τ + +
+

+

− −
−

−
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j
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L D S

V Q Q

F F
S

Q Q

. (36) 

 
Only destruction terms of the turbulence source terms 
are treated implicitly for stability reason as described 
in Ref. [11]. The matrices D , M  and K  are 
given by 
 

(1 )
2
φ τ θ τ∆= + + Γ − ∆

∆
D M K

t
, 

∂=
∂
WM
Q

, ∂=
∂

SK
W

. (37) 

 
The unsteady residual defined by 
 


1

(1 )
2 2

(1 )

φ φ

θ θ

−− −= + −
∆ ∆

+ + −

l n n n

l n

W W W WR
t t

R R
. (38) 

 
After convergence, we have 
 

1 1+ += =l l nW W W . (39) 
 
Therefore,  0=R . These are the discretized equations 
of the unsteady governing equations. This implies that 
the solutions with the present method are independent 
of the preconditioning matrix and τ∆ . Equation (32) 
can be applied to steady problems with 

1 1 2 0φ= + =C , 2 2 0φ= =C , and τ = t . 
Eq. (32) is a set of discretized equations of RANS 

equations and the turbulence model equations. It can 
be solved either by a loosely coupled method or by a 
strongly coupled method. The loosely coupled me-
thod solves the Navier-Stokes equations and the tur-
bulence model equations in sequence, while the 
strongly coupled method solves two sets of equations 
simultaneously. According to Lee and Choi [11], the 
stability characteristics of the loosely coupled method 
were the same as that of the strongly coupled method. 
Also, they showed that the actual convergence char-
acteristics were the same through the number of com-
putational examples. In this study, we adopt the 
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loosely coupled method since it runs faster and its 
implementation is relatively simple compared to the 
strongly coupled method. 

 
3.4 Boundary conditions 

Ghost cells are fictitious cells that are placed out-
side the physical boundaries in order to simplify ap-
plication of the boundary conditions. A non-reflecting 
boundary condition method is employed to suppress 
unwanted wave reflections at the boundaries. The 
non-reflecting boundary condition method takes the 
direction of wave propagation into account when 
applying boundary conditions. The characteristic 
variables are prescribed or extrapolated depending on 
the sign of wave directions. Let variables with a sub-
script ‘ b ’ denote variables to be computed at the 
ghost cells. Variables with a subscript ‘∞ ’ denote the 
freestream values, while variables with a subscript ‘ i ’ 
denote flow variables extrapolated from the interior 
domain. At the subsonic inlet boundary, five eigen-
values are positive, and one eigenvalue is negative, 
which suggests that five characteristic variables be 
prescribed and that one characteristic variable be ex-
trapolated. That is, 

 

( ) ( ){ }1

1 '
2

λ ρ
∞∞= + − −

ib i n np p p sign a v v , (40) 

ρ
∞

∞

−= − b
b

p

p pT T
C

, (41) 

( )
( ) ( )11 '

2
ρ β λ

∞
∞

−
= −

⎧ ⎫− +⎨ ⎬
⎩ ⎭

b x
b

n

p p n
u u

v sign a
, (42) 

( )
( ) ( )11 '

2
ρ β λ

∞
∞

−
= −

⎧ ⎫− +⎨ ⎬
⎩ ⎭

b y
b

n

p p n
v v

v sign a
, (43) 

∞=bq q , (44) 
ω ω∞=b , (45) 

 
where ( )1λsign  is used to account for the definition 
of the normal vector, n̂ . At the subsonic outflow 
boundary, however, five characteristic variables are 
extrapolated, and one characteristic variable is pre-
scribed: 
 

( ) ( ){ }1

1 '
2

λ ρ
∞∞= + − −

ib i n np p p sign a v v , (46) 

ρ
−= − i b

b i
p

p pT T
C

, (47) 
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( ) ( )11 '

2
ρ β λ

−
= −
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⎩ ⎭

i b x
b i

n

p p n
u u

v sign a
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( )
( ) ( )11 '

2
ρ β λ

−
= −
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⎩ ⎭

i b y
b i

n

p p n
v v

v sign a
, (49) 

=b iq q , (50) 
ω ω=b i . (51) 

 
If the turbulence model equations are integrated to 

the wall, we use the non-slip boundary conditions for 
the mean flow. For the ω−q  model, the turbulent 
velocity scale is set to zero at the wall, while the nor-
mal gradient of the specific dissipation rate is set to 
zero at the wall, 
 

0∂ =
∂ w

q
n

, 0ω =w . (52) 

 
For the ω−k  model, the turbulent kinetic energy 

is set to zero and the normal gradient of the specific 
dissipation rate is given by 
 

0=wk , 2
1

60ω µ
β

∂ =
∂ wn y

, (53) 

 
where y  is the normal distance from the wall, and 

1β  is the model constant of the ω−k  model. For 
the ω−q  model, the wall function method is avail-
able where the slip wall boundary condition is used 
for the mean flow. The amount of slip is determined 
to give the same value of wall shear stress computed 
from the wall function. The turbulent velocity scale 
and the specific dissipation rate are evaluated with the 
following equations: 

 

4

τ

µ

= uq
C

, µ τω =
v

C u
k y

, (54) 

 
where τu  is the friction velocity that is determined 
from the wall function and vk  is the von Karman 
constant of 0.41. The pressure and the temperature at 
the wall can be computed from the boundary layer 
approximation and the adiabatic temperature condi-
tion, 
 

0∂ =
∂ w

p
n

, 0∂ =
∂ w

T
n

. (55) 
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4. Computational results 

4.1 Laminar flow around a circular cylinder 

Laminar flow around a circular cylinder is chosen 
to show the accuracy of the present method for un-
steady problems. Fig. 1 shows an O-type computa-
tional grid of 257 257× . The Reynolds number 
based on the diameter of the cylinder is 150 and the 
Mach number is 0.2. It is well known that the flow 
over the circular cylinder becomes unsteady if 
Re 40>  and that the so-called Karmann vortex street 
is formed behind the cylinder. The vortex shedding 
frequency is well correlated to the free stream veloc-
ity via Strouhal number, ∞=St fD U  where f  is 
the shedding frequency of vortices, D  is the diame-
ter of the cylinder, and ∞U  is the free-stream veloc-
ity. 

The initial condition for the unsteady computation 
is obtained after 1,000 steady iterations with an angle 
of attack of 10 degrees. Then, the unsteady computa-
tion is performed with an angle of attack 0 degree. 
This creates asymmetry in the solution so that the 
vortex shedding forms more easily. The number of 
the inner iterations for the dual time stepping method 
is 30, and the time step for the unsteady computation 
in terms of non-dimensionalized time is *

∞∆ = ∆t ta D  
0.005= . Fig. 2 presents the time histories of the 

aerodynamic coefficients over the cylinder. The 
Strouhal number computed from the time history of 
the lift coefficient is found to be 0.1826=St . Also, 
the quantitative comparisons of both dC  and lC  

 

 
 
Fig. 1. Close-up view of an O-type grid over a cylinder. 

with Ref. [12] are presented in the Table 1. The drag 
coefficient and the lift coefficient are defined by 
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Figs. 3 and 4 show the velocity magnitude contour 

lines and streaklines at the maximum lift coefficients. 
Unsteady vortex flow due to the flow separation from 
the surface of the cylinder and its shedding vortices 
are clearly shown through those figures. To check the 
solution convergence, the same computations are 
repeated with three different grids: 129 129× , 
257 257× , and 350 350× . Table 2 shows the com-
putational results with the grids indicating the con-
vergence of the solution. 

 
Table 1. Comparison of the aerodynamic characteristics over 
the circular cylinder. 
 

 St  dC  lC  

Present Method 0.1826 1.327 0.024±  0.515±  

Ref. 12 0.182  1.334 0.03±  0.530±  
 

 
 
Fig. 2. Time histories of the aerodynamic coefficients of the 
circular cylinder, 0.1=M , Re 150= . 
 

 
 
Fig. 3. Instant velocity magnitude contour lines at the maxi-
mum lift. 
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Table 2. Grid convergence of the aerodynamic characteristics 
over the circular cylinder. 
 

 Grid size St  dC  lC  

Coarse 129 129×  0.1810 1.322 0.026± 0.515±
Medium 257 257×  0.1825 1.333 0.034± 0.538±

Fine 350 350×  0.1825 1.333 0.031± 0.540±

 

 
 
Fig. 4. Instant streaklines over the cylinder at the maximum 
lift. 
 

 
 
Fig. 5. Close-up view of grid system over a rectangular cylinder. 
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Fig. 6. Time histories of aerodynamic coefficients of the 
rectangular cylinder 0.0294=M , 5Re 10= . 

Table 3. Comparison of the aerodynamic characteristics over 
the rectangular cylinder. 
 

 St  ,d meanC  ,maxlC  

Present Method 0.087 0.20 0.28 

Ref. 13 0.09 0.23 0.24 

 

 
 
                 (a) * 600=t                   (b) * 650=t  
 

 
 
                 (c) * 700=t                   (d) * 750=t  
 
Fig. 7. Instant total pressure contour lines. 
 
 
4.2 Turbulent flow over a rectangular cylinder 

As the second verification problem, a turbulent 
flow over a rectangular cylinder is computed and 
compared with Larsen [13]. The aspect ratio of the 
cylinder is 5. The Mach number and the Reynolds 
number based on the length of the cylinder are 0.0294 
and 510 , respectively. Coakley’s ω−q  is chosen 
for the turbulent viscosity. The non-dimensional time 
increment is set to * 0.5∆ =t . The computational 
domain is divided into 10 blocks and the total number 
of grid points is 9,900. The turbulence model equa-
tions are integrated to the solid wall. In Figure 5, the 
grid system over the cylinder is shown. Unlike the 
previous case, the computation starts with a uniform 
flow. As can be seen in Fig. 6, it takes longer time to 
form shedding vortices that are emanating from the 
leading edges of the cylinder. In Table 3, Strouhal 
number, the mean drag coefficient and the mean lift 
coefficient are listed for comparison with Ref. [13]. 
Fig. 7 shows the total pressure contour plots in series 
at every 50 non-dimensional time. The flow-field 
patterns indicate separation bubbles near the leading 
edges. The formation of the separation bubbles alter-
nates between the upper surface and the lower surface.  
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Fig. 8. Close-up view of grid system over the symmetric bridge 
deck section. 
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Fig. 9. Time histories of the aerodynamic coefficients of the 
symmetric bridge deck section M=0.0294, Re= 72 10× . 
 
Also, the separation bubbles are convected down-
stream resulting in asymmetric flow pattern, which 
can be seen in Fig. 7. 

 
4.3 Turbulent flow around a symmetric bridge deck 

section 

As the first example of turbulent flow over a realis-
tic bridge, a symmetric bridge deck section is selected. 
The grid system over the bridge deck section consists 
of 5 blocks and the blocks are 151 40× , 389 70× , 
349 70× , 101 20× , and 61 40× . Fig. 8 shows a 
close-up view of the grid system. The unsteady calcu-
lation starts with the initial condition that is computed 
with the initial steady run. The unsteady analysis is 
performed with non-dimensionalized time step, 

* 0.05∆ =t  and 10 inner time steps for the dual time 
stepping. Mach number and Reynolds number based  

Table 4. Time averaged aerodynamic coefficients of the sym-
metric bridge deck section. 
 

 dC  lC  

Present Method BC1 0.0298 -0.5665 

Present Method BC2 0.0274 -0.5893 

Fluent 0.0323 -0.6046 
 

 
 
Fig. 10. Velocity vector plot near the leading edge of the 
bridge deck. 

 
on the length of the bridge deck section are 0.0294 
and 72 10× , respectively. Coakley’s ω−q  model is 
used with the wall function boundary condition. The 
wall function method is used to enforce the boundary 
condition along the surfaces of the bridge deck sec-
tion. 

The time histories of aerodynamic coefficients are 
plotted in Fig. 9. Fluent [14], a widely used commer-
cial solver for fluid dynamics, is used for comparison. 
The numerical methods used for Fluent are the PISO 
algorithm for pressure-velocity coupling, PRESTO 
for a pressure discretization and second-order upwind 
for momentum equations. Moreover, the RNG (re-
normalized group) ε−k  model with the wall func-
tion boundary is chosen for the turbulent viscosity. 
Since the available boundary conditions of Fluent are 
limited for subsonic flows, the symmetry conditions 
are stipulated on upper and lower boundaries in Fig. 8. 
However, this boundary condition is incorrect physi-
cally. The physically correct boundary condition 
should be that all the outer boundaries are far-field 
boundaries (BC1). For comparison purpose, the same 
boundary condition used in Fluent (BC2) is also used 
in computations. Figure 9 presents the histories of the 
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aerodynamic force and moment coefficients. Small 
differences in solutions between the present method 
and Fluent result from the fact that the present method 
uses a density-based method, while Fluent uses a 
pressure-based method. Nevertheless, Fig. 9 indicates 
that the results with BC2 match better with those of 
Fluent than those with BC1. However, the results 
with BC1 are believed to be physically correct. In 
Table 4, the averaged values of the aerodynamic coef-
ficients are compared with each other. Figure 10 de-
picts the velocity vector field near the leading edge of 
the bridge. Large separation bubbles are formed not 
only at the upper deck of the bridge but also at the 
lower deck of the bridge. 

 
4.4 Turbulent flow around an asymmetric bridge 

deck section 
An asymmetric bridge deck section is chosen as the 

second example. The geometry of the second bridge  
 

 
 
Fig. 11. Close-up view of grid system over the asymmetric 
bridge deck section. 
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Fig. 12. Time histories of the aerodynamic coefficients of the 
asymmetric bridge deck section 0.0294M = , 7Re 1 10= × . 

deck section is more complex than that of the first 
bridge due to an extra pier that divides the upper deck 
of the bridge into two sections. The structured grid 
system depicted in Fig. 11 is divided into 22 blocks 
and the total number of grid points is 75,835. The 
Mach number used in the computation is 0.0294 and 
the Reynolds number based on the length of the 
bridge is 71 10× . Menter’s SST ω−k  turbulence 
model is used for the turbulent viscosity. Numerical 
methods for Fluent are the same as in the previous 
computation. 

Fig. 12 shows the periodic variations of the aero-
dynamic coefficients in time. Even though the magni-
tude of oscillation of the normal force coefficient 
shows a little difference, the averaged values of the 
present method and Fluent show good agreement as 
can be seen in Table 5. Both Figs. 13 and 14 show the 
velocity vector plots at two time instants. The two 
figures indicate that the large vortex formed at the end  
 

 
 

Fig. 13. Velocity vector plot near the trailing edge of the 
bridge deck showing large vortices induced from flow sepa-
ration, * 150=t . 
 

 
 
Fig. 14. Velocity vector plot near the trailing edge of the 
bridge deck showing large vortices moving downstream, 

* 250t = . 
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Table 5. Time averaged aerodynamic coefficients of the 
asymmetric bridge deck section. 
 

 dC  lC  

Present Method 0.0506 -0.825 

Fluent ε−k  0.0535 -0.850 

 
of deck moves downstream. It is found from the nu 
merical computation that several vortices are formed 
behind the piers and inside the cavities. 
 

5. Conclusions 

This paper presents a numerical method for com-
puting aerodynamics of long-span bridges. The pre-
conditioned RANS equations are used as governing 
equations. Two turbulence models are used to com-
pute the turbulent eddy viscosity. Roe’s approximated 
Riemann solver in conjunction with the finite volume 
method is adopted for spatial discretization. AF-ADI 
with the dual time stepping method is used to update 
the solution in a time accurate manner. Through vali-
dation problems and demonstration problems, it is 
found that the current numerical method is capable of 
accurately predicting the aerodynamics of a long span 
bridge deck. 
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